Numerical Data Types

Integers: The most primitive numerical data type is integers.

Specification: -
C has four different integer specifications:
int, short, long, and char

But maximal and minimal values depend upon the what
bit architecture of hardware is basically, and in some
languages these values represented as defined constants.
Like in Pascal: max int

Types of Operations on Integers

1. Arithmetic Operation: -
 It is of basically two types
 - Binary operation
 Binop: integer x integer \rightarrow integer
 Eg: addition (+), subtraction (-),
 multiplication (*), division (/),
 remainder (mod)
 - Unary operation
 UnaryOp: integer \rightarrow integer
 Negative (-), or
 Identify (+), or
 ABS value
2) Relational Operations:-
Signature is
Relop : integer x integer \rightarrow Boolean

Where Relop may be equal, notequal, less than,
greater than, less-than-or-equal, greater-than-or-equal

Relational operation compares the values of its two
arguments data values and returns a Boolean (true or false
value) data object as its result.

3) Assignment Operations:-
Signature
assignment : integer x integer \rightarrow integer

and
assignment : integer x integer \rightarrow integer

4) Bit operations:-
In C, integers also play the role of Boolean values.
Therefore additional bit operation are also defined.

Signature:-
Binop : integer x integer \rightarrow integer

Operator ($\&$) for and the bits together
Operator ($|$) for or the bits together
Operator ($<<<<$) for shift the bit among others.
Implementation of Integers

Most often using the hardware-defined integer storage representation and a set of hardware arithmetic and relational operations on integers.

NO DESCRIPTOR

DESCRIPTOR STORED IN SEPARATE WORD

DESCRIPTOR STORED IN SAME WORD

THREE STORAGE REPRESENTATIONS FOR INTEGERS
Numeric Data Types

Sub Ranges of an Integer

Specification :-
A Subrange of an integer data type is a subtype of the integer data type and consists of a sequence of integer values within some restricted range.

Eg
Integers in Range

\[1 \text{ to } 10 \]

\[-500 \text{ to } 1000 \]

Declaration in Pascal
A: 1..10

Declaration in ADA
A : integer range 1..10

Implementation :- Its implementation basically has two advantages

(i) Smaller Storage Requirement :- As a smaller range of values,
a subrange value can usually be stored in fewer bits than a general integer value.
2) Better type checking:

More precise type checking to be performed on the value assigned to that variables

\[\text{Eg} \quad \text{if variable Month is: } \text{Month} : 1..12 \]

then the assignment

\[\text{Month} := 0 \]

is invalid and can be detected at compile time.

If we use assignment

\[\text{Month} : \text{Month} + 1 \]

at runtime, Compiler checks for range limit that should not be exceeded.